Abstract

This paper shows that a large class of fading memory state-space systems driven by discrete-time observations of dynamical systems defined on compact manifolds always yields continuously differentiable synchronizations. This general result provides a powerful tool for the representation, reconstruction, and forecasting of chaotic attractors. It also improves previous statements in the literature for differentiable generalized synchronizations, whose existence was so far guaranteed for a restricted family of systems and was detected using Hölder exponent-based criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.