Abstract

Dynamic economic dispatch (DED) plays an important role in the operation and control of power systems. The integration of DED with space and time makes it a complex and challenging problem in optimal decision making. By connecting plug-in electric vehicles (PEVs) to the grid (V2G), the fluctuations in the grid can be mitigated, and the benefits of balancing peaks and filling valleys can be realized. However, the complexity of DED has increased with the emergence of the penetration of plug-in electric vehicles. This paper proposes a model that takes into account the day-ahead, hourly-based scheduling of power systems and the impact of PEVs. To solve the model, an improved chaos moth flame optimization algorithm (CMFO) is introduced. This algorithm has a faster convergence rate and better global optimization capabilities due to the incorporation of chaotic mapping. The feasibility of the proposed CMFO is validated through numerical experiments on benchmark functions and various generation units of different sizes. The results demonstrate the superiority of CMFO compared with other commonly used swarm intelligence algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.