Abstract

The purpose of this series of lecture notes is to give an outline of the basic tools required to show the occurrence of chaotic motions in the simplest non--integrable problems in Celestial Mechanics, such as the circular restricted planar 3--body problem. No formal proofs will be given here; they can be found in the references given for each section. Section 1 describes the linear and local theory of ordinary differential equations in the neighbourhood of a fixed point; the problems arising in the embedding of invariant stable and unstable manifolds are also discussed. Section 2 is about periodic orbits; the subjects discussed include variational equations, surfaces of section, the continuation of periodic orbits in the restricted 3--body problem, and bifurcation of hyperbolic periodic orbits from resonant periodic orbits. Section 3 covers fundamental models of resonance, the global behaviour of separatrices, and their intersections; all this allows to give at least an outline of the proof of the fundamental result --presented by Poincaré in his book Les méthodes nouvelles de la mécanique céleste-- by which homoclinic points must necessarily occur in the restricted problem. A short conclusion underscores the fact --shown in a rigorous vay much later-- that this in turn implies that chaos in the strongest possible sense occurs in the restricted problem, and is an essential feature of every non--integrable system, even very simple ones with only two degrees of freedom. I apologize for reporting here my lectures in a very short format, almost without comments in between the formulas and statements of the main results; my understanding of the purpose of this notes is that they should serve as a reminder of the existence of many subjects to be studied, rather than a complete presentation which could not be contained in this format.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call