Abstract

By employing the two-fluid model, a system of nonlinear equations for low-frequency electromagnetic waves in nonuniform collisional magnetoplasmas has been derived. The plasma contains both the equilibrium density gradient and sheared flows. In the linear limit, a local dispersion relation has been obtained and analyzed in several interesting limiting cases. It is found that equilibrium sheared plasma flows cause instabilities of Alfvén-type waves even in the absence of the density gradient. The numerical results also show a large growth rate of electromagnetic parallel velocity shear (PVS) mode compared to the electrostatic mode for some ionospheric parameters. For this case, the temporal nonlinear behavior of the relevant governing mode coupling equations is governed by six coupled equations, which are a generalization of the Lorenz–Stenflo equations and which admit chaotic trajectories. The results of this investigation should be useful for understanding the linear and nonlinear properties of electromagnetic waves that are generated by sheared plasma flows in magnetized plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.