Abstract

Low-dimensional yet rich dynamics often emerge in the brain. Examples include oscillations and chaotic dynamics during sleep, epilepsy, and voluntary movement. However, a general mechanism for the emergence of low dimensional dynamics remains elusive. Here, we consider Wilson-Cowan networks and demonstrate through numerical and analytical work that homeostatic regulation of the network firing rates can paradoxically lead to a rich dynamical repertoire. The dynamics include mixed-mode oscillations, mixed-mode chaos, and chaotic synchronization when the homeostatic plasticity operates on a moderately slower time scale than the firing rates. This is true for a single recurrently coupled node, pairs of reciprocally coupled nodes without self-coupling, and networks coupled through experimentally determined weights derived from functional magnetic resonance imaging data. In all cases, the stability of the homeostatic set point is analytically determined or approximated. The dynamics at the network level are directly determined by the behavior of a single node system through synchronization in both oscillatory and non-oscillatory states. Our results demonstrate that rich dynamics can be preserved under homeostatic regulation or even be caused by homeostatic regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.