Abstract

An ecosystem is a web of complex interactions among species. With the purpose of understanding this complexity, it is necessary to study basic food chain dynamics with preys, predators and superpredators interactions. Although there is an elegant interpretation of ecological models in terms of chaos theory, the complex behavior of chaotic food chain systems is not completely understood. In the present work we study a specific food chain model from the literature. Using results from symbolic dynamics, we characterize the topological entropy of a family of logistic-like Poincaré return maps that replicates salient aspects of the dynamics of the model. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. This work is still another illustration of the role that the theory of dynamical systems can play in the study of chaotic dynamics in life sciences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.