Abstract

Railway bogies may perform sustained lateral oscillations — the hunting motion —when the speed reaches a certain value. We examine the hunting motion in the complex Cooperrider bogie and find that the wheel flanges have a strong influence on the behaviour. When the bogie has flangeless wheels we have found a symmetry breaking bifurcation, by which we mean, that there is a transition from a symmetric periodic oscillation to an asymmetric periodic oscillation. The periodic motions are examined using the residual map. When the bogie has flanged wheels (the flange is represented as a dead band spring), we do instead find chaotic behaviour confirmed by a positive Liapunov number. The dynamical equations for the bogie model are strongly nonlinear, and we use computer methods to examine the dynamical behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.