Abstract

Chaos game representation (CGR) is a novel holistic approach that provides a visual image of a DNA sequence quite different from the traditional linear arrangement of nucleotides. Although it is known that CGR patterns depict base composition and sequentiality, the biological significance of the specific features of each pattern is not understood. To systematically examine these features, we have examined the coding sequences of 7 human globin genes and 29 relatively conserved alcohol dehydrogenase (Adh) genes from phylogenetically divergent species. The CGRs of human globin cDNAs were similar to one another and to the entire human globin gene complex. Interestingly, human globin CGRs were also strikingly similar to human Adh CGRs. Adh CGRs were similar for genes of the same or closely related species but were different for relatively conserved Adh genes from distantly related species. Dinucleotide frequencies may account for the self-similar pattern that is characteristic of vertebrate CGRs and the genome-specific features of CGR patterns. Mutational frequencies of dinucleotides may vary among genome types. The special features of CG dinucleotides of vertebrates represent such an example. The CGR patterns examined thus far suggest that the evolution of a gene and its coding sequence should not be examined in isolation. Consideration should be given to genome-specific differential mutation rates for different dinucleotides or specific oligonucleotides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call