Abstract

In this paper, a chaos-enhanced bat algorithm is proposed to tackle the global optimization problems. Bat algorithm is a relatively new stochastic optimizer inspired by the echolocation behavior of bats in nature. Due to its effectiveness, it has been applied to many fields such as engineering design, feature selection, and machine learning. However, the classical approach is often prone to falling into local optima. This paper proposes an enhanced bat algorithm to alleviate this problem observed in the original algorithm. The proposed method controls the steps of chaotic mapping by a threshold and synchronizes the velocity of agents using a velocity inertia weight. These mechanisms are designed to boost the stability and convergence speed of the bat algorithm, instantly. Eighteen well-established and the state-of-the-art meta-heuristic approaches are considered to validate the effectiveness of the developed algorithm. Experimental results reveal that the proposed chaos-enhanced bat algorithm is not only superior to the well-established algorithms such as the original method but also the latest improved approaches. Also, the proposed method is successfully applied to I-beam design problems, welded beam design, and pressure vessel design. The results show that chaos-enhanced bat algorithm can deal with unconstrained and constrained feature spaces, effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.