Abstract
Due to its robust search mechanism, Gravitational search algorithm (GSA) has achieved a lot of popularity in different research communities. However, stagnation reduces its searchability towards global optima for rigid and complex multi-modal problems. This paper proposes a GSA variant that incorporates chaos-embedded opposition-based learning into the basic GSA for the stagnation-free search. Additionally, a sine-cosine based chaotic gravitational constant is introduced to balance the trade-off between exploration and exploitation capabilities more effectively. The proposed variant is tested over 23 classical benchmark problems, 15 test problems of CEC 2015 test suite, and 15 test problems of CEC 2014 test suite. Different graphical, as well as empirical analyses, reveal the superiority of the proposed algorithm over conventional meta-heuristics and most recent GSA variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.