Abstract

With the increasing wind power penetration, wind farms are directly influencing the power systems, so the need to improve the quality of the system is an open research topic. A Doubly-Fed Induction Generator (DFIG) is often used in wind power systems. However, DFIG has a complex structure and often works in harsh environments, so potential faults may occur. Faults can cause the system to fall into a chaotic working state, which is a harmful phenomenon for DFIG, since it makes the operating quality of the system worse, even leading to system destruction if not fixed on time. This study presents simulations of the chaotic phenomenon that occurs for a DFIG under specific working conditions based on Lyapunov’s exponents. The delay feedback controller is designed, and along with the selection of the appropriate controller parameters, the chaotic phenomenon is quickly eliminated, bringing the system back to stable operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.