Abstract
The stability of the predator–prey model subject to the Allee effect is an interesting topic in recent times. In this paper, we investigate the impact of weak Allee effect on the stability of a discrete-time predator–prey model with Holling type-IV functional response. The mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. We provide sufficient conditions for the flip bifurcation by considering Allee parameter as the bifurcation parameter. We observe that the model becomes stable from chaotic dynamics as the Allee parameter increases. Further, we observe bi-stability behavior of the model between only prey existence equilibrium and the coexistence equilibrium. Our analytical findings are illustrated through numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.