Abstract

This paper proposes the chaos control and the modified projective synchronization methods for unknown heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive backstepping control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a regular or periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise-like, synchronized chaotic systems can be used as cipher generators for secure communication. Obviously, the importance of obtaining these objectives is specified when the dynamics of gyroscope system are unknown. In this paper, using the neural backstepping control technique, control laws are established which guarantees the chaos control and the modified projective synchronization of unknown chaotic gyroscope system. In the neural backstepping control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimators are derived in the sense of Lyapunov function. Thus, the unknown chaotic gyroscope system can be guaranteed to be asymptotically stable. Also, the control objectives have been achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call