Abstract
We consider two dimensional conformal field theory (CFT) with large central charge c in an excited state obtained by the insertion of an operator Φ with large dimension ΔΦ ∼ O(c) at spatial infinities in the thermal state. We argue that correlation functions of light operators in such a state can be viewed as thermal correlators with a rescaled effective temperature. The effective temperature controls the growth of out-of-time order (OTO) correlators and results in a violation of the universal upper bound on the associated Lyapunov exponent when ΔΦ < 0 and the CFT is nonunitary. We present a specific realization of this situation in the holographic Chern-Simons formulation of a CFT with {mathrm{W}}_3^{(2)} symmetry also known as the Bershadsky-Polyakov algebra. We examine the precise correspondence between the semiclassical (large-c) representations of this algebra and the Chern-Simons formulation, and infer that the holographic CFT possesses a discretuum of degenerate ground states with negative conformal dimension {Delta}_{Phi}=-frac{c}{8} . Using the Wilson line prescription to compute entanglement entropy and OTO correlators in the holographic CFT undergoing a local quench, we find the Lyapunov exponent {uplambda}_L=frac{4pi }{beta } , violating the universal chaos bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.