Abstract

The ability of particles to "tunnel" through potential energy barriers is a purely quantum phenomenon. A classical particle in a symmetric double-well potential, with energy below the potential barrier, will be trapped on one side of the potential well. A quantum particle, however, can sit on both sides, in either a symmetric state or an antisymmetric state. An analogous phenomenon occurs in conservative classical systems with two degrees of freedom and no potential barriers. If only the energy is conserved, the phase space will be a mixture of regular "islands" embedded in a sea of chaos. Classically, a particle sitting in one regular island cannot reach another symmetrically located regular island when the islands are separated by chaos. However, a quantum particle can sit on both regular islands, in symmetric and antisymmetric states, due to chaos-assisted tunneling. Here, we give an overview of the theory and recent experimental observations of this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.