Abstract

We investigate the quantum-chaotic properties of the Dicke Hamiltonian; a quantum-optical model that describes a single-mode bosonic field interacting with an ensemble of N two-level atoms. This model exhibits a zero-temperature quantum phase transition in the N --> infinity limit, which we describe exactly in an effective Hamiltonian approach. We then numerically investigate the system at finite N, and by analyzing the level statistics, we demonstrate that the system undergoes a transition from quasi-integrability to quantum chaotic, and that this transition is caused by the precursors of the quantum phase transition. Our considerations of the wave function indicate that this is connected with a delocalization of the system and the emergence of macroscopic coherence. We also derive a semiclassical Dicke model that exhibits analogues of all the important features of the quantum model, such as the phase transition and the concurrent onset of chaos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.