Abstract

Considering the internal and external excitations such as time‐varying mesh stiffness (TVMS), backlash, transmission error, torque of the traction motor, and load torque of the wheel/rail, a lumped mass model of the spur gear drive system for a railway locomotive is established. Based on Ma models in the relevant literatures, TVMS is calculated by simplifying a gear tooth as a cantilever beam on the root circle, taking into account the effects of extended tooth contact as well as revised foundation stiffness. The bifurcation diagrams and Lyapunov exponent curves of the model parameters are drawn by the numerical method, and the mechanism of chaos evolution of the gear transmission system is analyzed. According to the Floquet theory, variation curves of the maximum Floquet multiplier with pinion speed and support stiffness ratio are drawn by numerical methods. Combined with the bifurcation diagram of the system, the influences of model parameter on the stability of the system are analyzed, and the evolution laws of periodic motion and bifurcation phenomenon are gained. These research results provide the theoretical evidence of model parameter design of the locomotive transmission system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.