Abstract

The problem of chaotic behavior in quantum mechanics is investigated against the background of the theory of quantum-nondemolition (QND) measurements. The analysis is based on two relevant features: The outcomes of a sequence of QND measurements are unambiguously predictable, and these measurements actually can be performed on one single system without perturbing its time evolution. Consequently, QND measurements represent an appropriate framework to analyze the conditions for the occurrence of ``deterministic randomness'' in quantum systems. The general arguments are illustrated by a discussion of a quantum system with a time evolution that possesses nonvanishing algorithmic complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.