Abstract
We consider a coupled top model describing two interacting large spins, which is studied semiclassically as well as quantum mechanically. This model exhibits a variety of interesting phenomena such as a quantum phase transition (QPT), a dynamical transition, and excited-state quantum phase transitions above a critical coupling strength. Both classical dynamics and entanglement entropy reveal ergodic behavior at the center of the energy density band for an intermediate range of coupling strength above QPT, where the level spacing distribution changes from Poissonian to Wigner-Dyson statistics. Interestingly, in this model we identify quantum scars as reminiscent of unstable collective dynamics even in the presence of an interaction. The statistical properties of such scarred states deviate from the ergodic limit corresponding to the random matrix theory and violate Berry's conjecture. In contrast to ergodic evolution, the oscillatory behavior in the dynamics of the unequal time commutator and survival probability is observed as the dynamical signature of a quantum scar, which can be relevant for its detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.