Abstract

This paper reports a new fractional-order Lorenz-like system with one saddle and two stable node-foci. First, some sufficient conditions for local stability of equilibria are given. Also, this system has a double-scroll chaotic attractor with effective dimension being less than three. The minimum effective dimension for this system is estimated as 2.967. It should be emphasized that the linear differential equation in fractional-order Lorenz-like system seems to be less “sensitive” to the damping, introduced by a fractional derivative, than two other nonlinear equations. Furthermore, mixed synchronization of this system is analyzed with the help of nonlinear feedback control method. The first two pairs of state variables between the interactive systems are anti-phase synchronous, while the third pair of state variables is complete synchronous. Numerical simulations are performed to verify the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.