Abstract

Karhunen-Loeve decomposition is done on a chaotic spatio-temporal solution obtained from a nonlinear reaction-diffusion model of a chemical system simulating a chemical process in an open Couette-flow reactor. Using a Galerkin projection of the dominant Karhunen-Loeve modes back onto the nonlinear partial differential system, we obtain an ordinary differential equation model of the same process. Major features such as intermittent and chaotic bursting of the nonlinear process as well as the mechanism of transition to chaos are shown to exist in the low-dimensional model as well as the PDE model. From the low-dimensional model the onset of intermittent bursts followed by small amplitude oscillations is shown to arise due to a sequence of saddle-node bifurcations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.