Abstract

Many complex systems in nature and in human society exhibit time fluctuations characterized by a power spectrum S(f) which is a power function of the frequency f. Examples with this behavior are the Sun spot activity, the human heartbeat, the DNA sequence, or Bach’s First Brandenburg Concert. In this work, we show that the energy spectrum fluctuations of quantum systems can be formally considered as a discrete time series, with energy playing the role of time. Because of this analogy, the fluctuations of quantum energy spectra can be studied using traditional methods of time series, like calculating the Fourier transform and studying the power spectrum. We present the results for paradigmatic quantum chaotic systems like atomic nuclei (by means of large scale shell‐model calculations) and the predictions of random matrix theory. We have found a surprising general property of quantum systems: The energy spectra of chaotic quantum systems are characterized by 1/f noise, while regular quantum systems exhibit...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call