Abstract

The novel Ca2+-mobilizing second messengers cADPr (cyclic ADP-ribose) and NAADP (nicotinic acid-adenine dinucleotide phosphate) are both synthesized by ADP-ribosyl cyclases. Using HSR (heavy sarcoplasmic reticulum) fractions from rabbit skeletal muscle, NAADP-induced Ca2+ release was observed. In the present paper, we show in HSR membranes the formation of authentic cADPr, cGDPr (cyclic GDP-ribose) and NAADP. The cyclization reaction to form cADPr and cGDPr as well as the base-exchange reaction to form NAADP were strictly dependent on pH. Although the formation of cGDPr is optimized at pH 6, the synthesis of NAADP was most pronounced at a pH below 5. A novel regulation mechanism is provided for nicotinic acid, the co-substrate for NAADP synthesis. Nicotinic acid had virtually no influence on the cyclization reaction, but increased the affinity of NADP at an acidic pH and had the opposite effect at alkaline pH. Nicotinamide, the side product of cADPr synthesis, is an inhibitor of the cyclization reaction (IC50, 0.7+/-0.1 mM) and was 30-fold more potent at suppressing the base-exchange reaction. Although the synthesis of NAADP was highly sensitive to nicotinamide inhibition, this was not via a competition with the nicotinic-acid-binding site. In contrast with the ecto-ADP-ribosyl cyclase (CD38), the cyclization and base-exchange reaction of the skeletal muscle isoform was inhibited by Cu2+ and Zn2+, while other bivalent cations such as Ca2+, Mg2+ and Mn2+ had virtually no effect. These findings allow for the prediction of a novel ADP-ribosyl cyclase isoform in skeletal muscle HSR, other than CD38. Hence the enzymic prerequisite for cADPr- and NAADP-mediated Ca2+ signalling is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.