Abstract

The interaction of a high-energy relativistic laser pulse with an underdense plasma is studied by means of 3-dimensional particle in cell simulations and theoretical analysis. For powers above the threshold for channeling, the laser pulse propagates as a single mode in an electron-free channel during a time of the order of 1picosecond. The steep laser front gives rise to the excitation of a surface wave along the sharp boundaries of the ion channel. The surface wave first traps electrons at the channel wall and preaccelerates them to relativistic energies. These particles then have enough energy to be further accelerated in a second stage through an interplay between the acceleration due to the betatron resonance and the acceleration caused by the longitudinal part of the surface wave electric field. It is necessary to introduce this two-stage process to explain the large number of high-energy electrons observed in the simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call