Abstract

A kinetic model combined with the dielectric response theory is employed to study the electronic excitation on the nanotube walls during the channeling of protons through double-walled carbon nanotubes. Analytical expressions of the self-energy and stopping power are obtained with protons moving along the axis of the double-walled nanotubes. Calculation results show us interesting double-peak curves of the self-energy and stopping power, under strong influence of the damping factor and the special double-walled nanotube geometry. Relatively increasing the damping factor and the chiral parameter of the outer wall can reduce the interference effects between the two walls and weaken the double-peak to one-peak shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call