Abstract

Channeling of B and Al ions in 4H-SiC(0001), has been investigated by secondary ion mass spectrometry (SIMS). Ion implantations have been performed between room temperature (RT) and 600 °C at various fluences. Before implantation, the major crystal axes were determined and the sample was aligned using the blocking pattern of backscattered protons. As expected, the depth distribution of the implanted ions along a crystal direction penetrates much deeper compared to non-channeling directions. At elevated temperatures, the channeling depth for 100 keV Al-ions is decreased due to lattice vibrations. For 50 keV B-ions, the temperature effect is minor, indicating a smaller interaction between target atoms and B. Simulations has been performed using SIIMPL, a Monte Carlo simulation code based on the binary collision approximation, to predict experimental data and get a deeper insight in the channeling process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call