Abstract
Semantic segmentation is a crucial technology for intelligent vehicles, enabling scene understanding in complex driving environments. However, complex real-world scenarios often contain diverse multi-scale objects, which bring challenges to the accurate semantic segmentation. To address this challenge, we propose a multi-level features self-attention fusion module called Channel2DTransformer. The module utilizes self-attention mechanisms to dynamically fuse multi-level features by computing self-attention weights between their channels, resulting in a consistent and comprehensive representation of scene features. We perform the module on the Cityscapes and NYUDepthV2 datasets, which contain a large number of multi-scale objects. The experimental results validate the positive contributions of the module in enhancing the semantic segmentation accuracy of multi-scale objects and improving the performance of semantic segmentation in complex scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.