Abstract

The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study, a new performance was added to this weir, by making a step at downstream (D/S) of weir. The energy dissipation, the height of the weir/the upstream water height ratio and Froude number relationships (E% – P/h – Fr) for three range of flume slop S = 0.0, 0.002 and 0.004 were simulated. The experiments were performed in a laboratory horizontal channel of 4.6 m length, 0.3 m width and 0.3 m depth for a wide range of discharge. The D/S step height of the weir was 7.5 cm. FLUENT software was used as numerical model which represent a type of Computational Fluid Dynamics (CFD) model in order to simulate flow over weirs. The Volume of Fluid (VOF) method with the Standard k – ε turbulence model was used to estimate the free surface profile and the structured mesh with high concentration near the wall regions. The experimental results of the water surface profile gave a high agreement with the results of the numerical models. The maximum value 28.78 of E% was obtained in single step broad crested weir in the experimental result and 27.35 in numerical result at S = 0.004. Finally, the range of the relative error of the energy dissipation between experimental and numerical results was achieved and the maximum was 6.76 in all runs.

Highlights

  • A broad crested weir is usually considered for most hydraulic structures for flow measurement and to control the water surface level in open channels

  • The effect of bed slope on the water level is shown in Figure 6 for S = 0.002 and Figure 7 for S = 0.004

  • The results showed that the water level had smooth trend and it had a decreasing value along the weir

Read more

Summary

Introduction

A broad crested weir is usually considered for most hydraulic structures for flow measurement and to control the water surface level in open channels. M. Al-Hashimi et al 838 usually critical conditions. The weirs are of different types such as broad crested, sharp crested and ogee crest weir. The streamline flows over broad crested weir are parallel to the crest, critical depth occur along the crest and the pressure distribution is hydrostatic [1]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call