Abstract

The number of Wi-Fi devices and their requirements for bandwidth keep on increasing, along with their hunger for spectrum. This fact is mostly noticeable in dense urban scenarios where neighbors fight for bandwidth and their networks struggle to deliver the requested information. While the inherent limitations of Wi-Fi technologies cannot be overcome, they can be mitigated through configuration. Optimally selecting a wireless channel is a critical aspect of access point (AP) configuration, and a challenging task due to a broad range of factors affecting the wireless connection performance. This paper addresses the channel selection problem by relying on a time-varying dynamic approach capable of modeling its surrounding wireless networks with respect to their usage patterns, channel utilization and adjacent channel interference. This contextual data is used in a channel selection model, which combines utilization patterns and statistics with a probabilistic mathematical model to accurately estimate the impact of adjacent channel interference on the signal to interference plus noise ratio, hence effectively selecting a wireless channel whose optimal performance is exhibited when the users' need it. The experimental results demonstrate that the proposed approach outperforms competing methods while closely tracking the simulation models, thus paving the way for smarter APs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.