Abstract

Automatic speech recognition in a room with distant microphones is strongly affected by noise and reverberation. In scenarios where the speech signal is captured by several arbitrarily located microphones the degree of distortion differs from one channel to another. In this work we deal with measures extracted from a given distorted signal that either estimate its quality or measure how well it fits the acoustic models of the recognition system. We then apply them to solve the problem of selecting the signal (i.e. the channel) that presumably leads to the lowest recognition error rate. New channel selection techniques are presented, and compared experimentally in reverberant environments with other approaches reported in the literature. Significant improvements in recognition rate are observed for most of the measures. A new measure based on the variance of the speech intensity envelope shows a good trade-off between recognition accuracy, latency and computational cost. Also, the combination of measures allows a further improvement in recognition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.