Abstract

In this paper, channel optimized distributed multiple description vector quantization (CDMD) schemes are presented for distributed source coding in symmetric and asymmetric settings. The CDMD encoder is designed using a deterministic annealing approach over noisy channels with packet loss. A minimum mean squared error asymmetric CDMD decoder is proposed for effective reconstruction of a source, utilizing the side information (SI) and its corresponding received descriptions. The proposed iterative symmetric CDMD decoder jointly reconstructs the symbols of multiple correlated sources. Two types of symmetric CDMD decoders, namely the estimated-SI and the soft-SI decoders, are presented which respectively exploit the reconstructed symbols and a posteriori probabilities of other sources as SI in iterations. In a multiple source CDMD setting, for reconstruction of a source, three methods are proposed to select another source as its SI during the decoding. The methods operate based on minimum physical distance (in a wireless sensor network setting), maximum mutual information and minimum end-to-end distortion. The performance of the proposed systems and algorithms are evaluated and compared in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.