Abstract

In this paper, based on channel measurements at 26 GHz in an open office, modeling approaches for joint channel parameters are proposed to find an optimal distance. The results show that after the optimal distance, the mean and variance values of the channel parameters changed linearly with the cumulative measurement distances. When doing channel measurements, the measured range is required to be larger than the optimal distance, otherwise the mean and variance values of the channel parameters are found to have big fluctuations with no rules to follow. After the optimal distance, we can use their linear functions with respect to the measured distances to predict the mean and variance values instead of using the fixed values based on their statistical distributions of the channel parameters to implement more accurate channel simulations. The results in this paper are significant in millimeter wave channel measurement and modeling for fifth generation radio systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.