Abstract

Inspired by the advanced integrated sensing and communication (ISAC), in this Letter, we explore the non-line-of-sight (NLoS) optical channels formed by reflections from the ground or objects to establish an integrated channel model for simultaneous communication and sensing. The integrated channel model can, on the one hand, perceive the changes in the surrounding environment and, on the other hand, determine whether these changes positively or negatively affect the quality of communication simultaneously. To validate the effectiveness of the proposed model, from sensing, we analyze the impact of various floor materials and visible light communication (VLC) users on the integrated channel; from communication, we characterize the influence of perceived environmental changes on communication performance by calculating throughput. Experimental results confirm the capability of the derived model, which can support the design and deployment of VL-based ISAC networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call