Abstract

We previously reported the development of reproducible techniques for isolating and perfusing intact intrahepatic bile duct units (IBDUs) from rats. Given the advantages of transgenic and knockout mice for exploring ductal bile formation, we report here the adaptation of those techniques to mice and their initial application to the study of water transport across mouse intrahepatic biliary epithelia. IBDUs were isolated from livers of normal mice by microdissection combined with enzymatic digestion. After culture, isolated IBDUs sealed to form intact, polarized compartments, and a microperfusion system employing those isolated IBDUs developed. A quantitative image analysis technique was used to observe a rapid increase of luminal area when sealed IBDUs were exposed to a series of inward osmotic gradients reflecting net water secretion; the choleretic agonists secretin and forskolin also induced water secretion into IBDUs. The increase of IBDU luminal area induced by inward osmotic gradients and choleretic agonists was reversibly inhibited by HgCl2, a water channel inhibitor. With the use of a quantitative epifluorescence technique in perfused mouse IBDUs, a high osmotic water permeability (P(f) = 2.5-5.6 x 10(-2) cm/s) was found in response to osmotic gradients, further supporting the presence of water channels. These findings suggest that, as in the rat, water transport across intrahepatic biliary epithelia in mice is water channel mediated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.