Abstract

Terahertz (THz) communication has been envisioned as a key enabling technology for sixth-generation (6G). In this paper, we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz. Furthermore, the path loss is analyzed and modeled by using two single-frequency path loss models and a multiple-frequencies path loss model. It is found that at most frequency points, the measured path loss is larger than that in the free space. But at around 310 GHz, the propagation attenuation is relatively weaker compared to that in the free space. Also, the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1. Moreover, the cellular performance of THz communication systems is investigated by using the obtained path loss model. Simulation results indicate that the current inter-site distance (ISD) for the indoor scenario is too small for THz communications. Furthermore, the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands. Generally, this work can give an insight into the design and optimization of THz communication systems for 6G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call