Abstract

In this paper, a channel-level event-triggered communication scheme is investigated for path tracking control of autonomous ground vehicles via an in-vehicle network to ensure path tracking performance while reducing network resource utilization. First, a path tracking system is established considering the effect of norm bounded uncertainty on lateral vehicle dynamics, and a state feedback path tracking controller is designed within the Takagi–Sugeno fuzzy framework. Next, a decentralized event-triggered communication scheme is adopted between the sensors and controller, which makes it possible to save communication resources at the channel level. Finally, the results in the CarSim-Simulink joint-simulation environment show that the proposed controller can ensure a reliable path tracking performance in both lateral offset and heading error. At the same time, compared with the simple time-triggered scheme, the proposed method can effectively reduce the usage of communication resources by more than 80%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.