Abstract

Cell-free (CF) massive multiple-input multiple-output (MIMO) is an alternative topology for future wireless networks, where a large number of single-antenna access points (APs) are distributed over the coverage area. There are no cells but all users are jointly served by the APs using network MIMO methods. Prior works have claimed that the CF massive MIMO inherits the basic properties of cellular massive MIMO, namely, channel hardening and favorable propagation. In this paper, we evaluate if one can rely on these properties when having a realistic stochastic AP deployment. Our results show that channel hardening only appears in special cases, for example, when the pathloss exponent is small. However, by using 5–10 antennas per AP, instead of one, we can substantially improve the hardening. Only spatially well-separated users will exhibit favorable propagation, but when adding more antennas and/or reducing the pathloss exponent, it becomes more likely for favorable propagation to occur. The conclusion is that we cannot rely on the channel hardening and the favorable propagation when analyzing and designing the CF massive MIMO networks, but we need to use achievable rate expressions and resource allocation schemes that work well also in the absence of these properties. Some options are reviewed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call