Abstract

Abstract Hydraulic fracturing has evolved as the preferred completion strategy for low-permeability reservoirs in India. Hence, a hydraulic fracturing technique that maximizes production and is also operationally efficient will provide an optimum solution for the development of these reservoirs. A channel fracturing technique recently applied to more than 20 treatments for various operators in different fields and reservoirs in India has been delivering superior production results and has proved to be operationally more efficient compared to conventional hydraulic fracturing operations performed in India. Proppant is pumped in pulses at the surface during the channel fracturing technique. These pulses create stable channels within the hydraulic fractures thus decoupling fracture conductivity from the proppant pack itself which result in providing near-infinite fracture conductivity. An earth model was prepared from petrophysical measurements including acoustical data which allowed for the calculation of stresses that are required for hydraulic fracture modelling. These preliminary models were further calibrated based on pressure data gathered during fracture diagnostic tests and this calibrated model was used for the final treatment design. Post-treatment production evaluation was performed by applying nodal analysis and by comparing actual production with predicted production from a reservoir simulator. Treatment evaluation indicated higher fracture conductivity for channel fracturing technique than that of conventional treatments and this led to higher production. Fracturing fluid recovery has also been higher as compared to conventional treatments. Screenouts were eliminated on the treatments that applied the channel fracturing technique. This allowed fracturing zones that might not have been completed with conventional treatments. The amount of proppant pumped per stage has been reduced by nearly 50% as compared to conventional treatments and treating pressures in general have been lower which has led to lower horsepower consumption on the treatments. These successful hydraulic fracturing treatments have confirmed the applicability of the channel fracturing technique in the low-permeability reservoirs of India. This paper presents channel fracturing treatments that have been performed for the first time in India including treatments performed with heated fluid expanding the envelope for the technology application. This paper identifies a solution for screenouts during hydraulic fracturing treatments while maximizing production from low-permeability reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call