Abstract
Cecropins, positively charged antibacterial peptides found in the cecropia moth, and synthetic peptide analogs form large time-variant and voltage-dependent ion channels in planar lipid membranes in the physiological range of concentration. Single-channel conductances of up to 2.5 nS (in 0.1 M NaCl) were observed, which suggests a channel diameter of 4 nm. Channels formed by the peptides cecropin AD and MP3 had a permeability ratio of Cl-/Na+ = 2:1 in 0.1 M NaCl. A comparative study of the three cecropins, cecropins A, B, and D, and of six synthetic analogs allowed determination of structural requirements for pore formation. Shorter amphipathic peptides did not form channels, although they adsorbed to the bilayer. A flexible segment between the N-terminal amphipathic region and the C-terminal more hydrophobic region of the peptide was required for the observation of a time-variant, voltage-dependent conductance. Cecropin AD was the most effective voltage-dependent pore-forming peptide and was also the most potent antibacterial peptide against several test organisms. A positive surface charge or cholesterol in the bilayer reduced the conductances caused by cecropin AD or MP3 by at least 5-fold. This behavior is consistent with the known insensitivity of eukaryotic cells to cecropins. Our observations suggest that the broad antibacterial activity of cecropins is due to formation of large pores in bacterial cell membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.