Abstract

Abstract The channel flow model aims to explain features common to metamorphic hinterlands of some collisional orogens, notably along the Himalaya-Tibet system. Channel flow describes a protracted flow of a weak, viscous crustal layer between relatively rigid yet deformable bounding crustal slabs. Once a critical low viscosity is attained (due to partial melting), the weak layer flows laterally due to a horizontal gradient in lithostatic pressure. In the Himalaya-Tibet system, this lithostatic pressure gradient is created by the high crustal thicknesses beneath the Tibetan Plateau and ‘normal’ crustal thickness in the foreland. Focused denudation can result in exhumation of the channel material within a narrow, nearly symmetric zone. If channel flow is operating at the same time as focused denudation, this can result in extrusion of the mid-crust between an upper normal-sense boundary and a lower thrust-sense boundary. The bounding shear zones of the extruding channel may have opposite shear sense; the sole shear zone is always a thrust, while the roof shear zone may display normal or thrust sense, depending on the relative velocity between the upper crust and the underlying extruding material. This introductory chapter addresses the historical, theoretical, geological and modelling aspects of channel flow, emphasizing its applicability to the Himalaya-Tibet orogen. Critical tests for channel flow in the Himalaya, and possible applications to other orogenic belts, are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call