Abstract

The recently proposed millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) system relying on a lens antenna array (LAA) significantly reduces the number of radio frequency chains using beam selection. A high data rate can be achieved based on the reduced-dimensional equivalent channel after beam selection. In frequency division duplexing systems, the equivalent channel has to be fed back to the base station (BS) via a feedback channel based on a codebook. However, no dedicated codebook has been proposed for LAA-aided mmWave systems. To fill this gap, in this letter, we propose a reduced-dimensional subspace codebook (RDSC) for such systems. Specifically, under the recently proposed concept of angle coherence time , we first generate the large-dimensional vectors in the channel subspace , which is determined by the angles-of-departure of the dominant paths. Then, based on these vectors in the channel subspace, we create the RDSC by considering both the lens and the beam selector. Finally, the equivalent channel is quantized using the proposed RDSC and fed back to the BS. Finally, we carry out mathematical performance analysis of the proposed RDSC and show that its feedback overhead is rendered proportional to the relatively small number of dominant paths per user. The analytical results are verified by our simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.