Abstract

The large number of estimated parameters in a reconfigurable intelligent surface (RIS) makes it difficult to achieve accurate channel estimation accuracy in 6G. Therefore, we suggest a novel two-phase channel estimation framework for uplink multiuser communication. In this context, we propose an orthogonal matching pursuit (OMP)-based linear minimum mean square error (LMMSE) channel estimation approach. The OMP algorithm is used in the proposed algorithm to update the support set and pick the columns of the sensing matrix that are most correlated with the residual signal, which successfully reduces pilot overhead by removing redundancy. Here, we use LMMSE’s advantages for handling noise to address the problem of inadequate channel estimation accuracy when the signal-to-noise ratio (SNR) is low. Simulation findings demonstrate that the proposed approach outperforms least-squares (LS), traditional OMP, and other OMP-based algorithms in terms of estimate accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.