Abstract

As an effective technique to combat adverse effects of fading, provide diversity and increase the transmission rate, space-time coding (STC) has been gaining more and more attention. This paper presents efficient zero-forcing (ZF) and minimum mean-square error (MMSE) equalization schemes to combat intersymbol interference (ISI) and obtain diversity gain in a system using symbol-level space-time block coding. General linear and decision feedback equalizers are derived with two transmit antennas and M receive antennas. The conditions are explored under which FIR channels can be equalized perfectly in noise-free environments. In order to estimate the system performance, upper bounds of bit error rate (BER) are derived. A training-aided method are proposed as well to estimate the channel state information (CSI) utilizing training sequences. Numerical results of the proposed techniques show significant performance improvement compared to the case without equalization, and show the tightness of the upper bounds along with the effectiveness of the channel estimation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.