Abstract

This paper describes a theoretical and experimental analysis of the channel drop filter using a single defect formed near the two-dimensional (2-D) photonic crystal slab waveguide. First, we calculate the transmission spectrum of a 2-D photonic crystal waveguide and show that high transmittance for a wide wavelength range (/spl sim/60 nm) is obtained in the 1.55-/spl mu/m region. We also show that a defect state having a wavelength within the high transmission wavelength range can be formed in the photonic bandgap by introducing a single defect of appropriate radius. Next, we fabricate several devices and show that the emission wavelength from each defect can be tuned by changing the defect radius. The measured tuning characteristics coincide well with the calculated results. From the near-field pattern of the device, we estimate the emission efficiency of the present device at almost a few tens percent. We clarify the structural condition in order to obtain the maximum output efficiency and show that tuning of emission wavelength while maintaining high output efficiency is possible by selecting appropriate defect radius and position. Based on these results, we propose an ultrasmall channel drop filter for a wavelength-division-multiplex optical communication system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.