Abstract

The high signal throughput of Fourier transform spectroscopy has proved a boon to overcoming the difficulties of otherwise overwhelming detector noise in chemical infrared spectroscopy and near-infrared Raman spectroscopy, and is desirable for in situ measurement. Here we introduce a stationary channel dispersed Fourier transform (CDFT) spectrometer that efficiently utilizes two-dimensional imagers to obtain high-resolution input spectra in low-pixel-density imagers. By angularly dispersing a vertical one-dimensional interference pattern along a horizontal axis, an array of bandlimited interferogram channels is measured with reduced sampling constraints in each channel. CDFT spectrometers can use existing imagers to measure spectra with 0.0025 cm−1 resolution over an 800 cm−1 bandwidth. Moreover, this approach reduces the quantization noise present in low dynamic range imagers significantly. To demonstrate the utility of CDFT spectroscopy, broadband spectral domain optical coherence and multicolor quantum dot photoluminescence are measured in low-pixel-density imagers.

Highlights

  • The high signal throughput of Fourier transform spectroscopy has proved a boon to overcoming the difficulties of otherwise overwhelming detector noise in chemical infrared spectroscopy and near-infrared Raman spectroscopy, and is desirable for in situ measurement

  • In Fourier transform (FT) spectroscopy, the high signal throughput has proved a boon to overcoming the difficulties of otherwise overwhelming detector noise in infrared spectroscopy and near-infrared Raman spectroscopy, and is desirable for in situ measurement[8,9,10,11,12]

  • To improve the spectral resolution of stationary FT spectrometers, we introduce a channel dispersed Fourier transform (CDFT) spectrometer that records two-dimensional spatial interferograms using imaging detectors in a single-frame snapshot to recover highresolution spectra

Read more

Summary

Introduction

The high signal throughput of Fourier transform spectroscopy has proved a boon to overcoming the difficulties of otherwise overwhelming detector noise in chemical infrared spectroscopy and near-infrared Raman spectroscopy, and is desirable for in situ measurement. We introduce a stationary channel dispersed Fourier transform (CDFT) spectrometer that efficiently utilizes two-dimensional imagers to obtain high-resolution input spectra in low-pixel-density imagers. To demonstrate the utility of CDFT spectroscopy, broadband spectral domain optical coherence and multicolor quantum dot photoluminescence are measured in low-pixel-density imagers. To improve the spectral resolution of stationary FT spectrometers, we introduce a channel dispersed Fourier transform (CDFT) spectrometer that records two-dimensional spatial interferograms using imaging detectors in a single-frame snapshot to recover highresolution spectra. Through efficient use of the full pixel count in imaging detectors, the resolution improvement of CDFT spectrometers offers a route to a compact and precise in situ spectrometer, useful for environmental management, medicine, and security[26,27,28,29,30,31]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call