Abstract

In millimeter-wave (mmWave) communication systems, hybrid beamforming is regarded as an effective way to increase the spectral efficiency of the massive multiple-input multiple-output (MIMO) system. Assuming perfect channel state information (CSI) is known at the transmitter, we focus on a downlink massive multi-user MIMO system which supports multi-stream per user. In the above scenario, we investigate the hybrid beamforming problem with strong correlation between users’ channels, where the existing schemes have performance loss. To tackle this problem, this paper proposes the channel correlation cancelation-based hybrid beamforming (CCCHB) algorithm which considers the correlation between channels and decomposes the optimization of overall spectrum efficiency of the users to a series of sub-rate optimization problems. And the block diagonalization (BD) technique is used in the equivalent channel to eliminate inter-user interference. Simulation results illustrate that the performance of the proposed scheme outperforms the existing algorithm, especially significant when there exists high correlation between users’ channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.