Abstract
This paper investigates the performance of wireless systems that employ finite-blocklength channel codes for transmission and operate under queueing constraints in the form of limitations on buffer overflow probabilities. A block fading model, in which fading stays constant in each coherence block and change independently between blocks, is considered. It is assumed that channel coding is performed over multiple coherence blocks. An approximate lower bound on the transmission rate is obtained from Feintein's Lemma. This lower bound is considered as the service rate and is incorporated into the effective capacity formulation, which characterizes the maximum constant arrival rate that can be supported under statistical queuing constraints. Performances of variable-rate and fixed-rate transmissions are studied. The optimum error probability for variable rate transmission and the optimum coding rate for fixed rate transmission are shown to be unique. Moreover, the tradeoff between the throughput and the number of blocks over which channel coding is performed is identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.