Abstract

AbstractIn wireless communication systems, the transmission channel constitutes the medium separating the transmitter from the receiver. Due to the growing demand for wireless systems in terms of data rate, it is necessary to look for new technology to support this need. Nowadays, The interest of Terahertz (THz) technology is growing increasingly. Indeed, THz technology indeed has the potential to provide ultra-fast data rate of Terabit-per-second (Tbps), Reliable Low Latency Communications and multimedia applications for wireless communication systems. However, the transmission channel at Terahertz bands poses more complexity than the currently used sub-30 GHz bands. The increase in the carrier frequency led to a high path loss. In this direction, Constant envelope Orthogonal Frequency Division Multiplexing (CE-OFMD) modulation is used in this work to increase the quality of transmission in terms of the Bit Error Rate (BER). Thus, In order to develop the THz system and effectively exploit the advantages of this technology, it is essential to know the properties of the radio channel in THz Band than to implement the THz channel in the transmission chain based on CE-OFDM. To do that, an accurate model for THz channel have to be expected by taking into account the effect of both the scattering loss and atmospheric attenuation which are the main characteristics of THz channels. The proposed model in this chapter is based on the Saleh-Valenzuela (S-V) statistical model which combines the concepts of “clusters” and AOA (Angle Of Arrival). In order to validate the proposed model, simulations of frequency channel response and time domain channel are carried out. It has been demonstrated from simulation that the performance of the THz system depends on the transmission windows. For this reason, we used CE-OFDM over these transmission windows to improve the performance of THz system.KeywordsOFDMCE-OFDMBERSNRTHzChannel modelingWireless communication systems

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call