Abstract

In the last 15 years, tremendous progress has been made in the development of single-cell cAMP sensors. Sensors are based upon cAMP-binding proteins that have been modified to transduce cAMP concentrations into electrical or fluorescent readouts that can be readily detected using patch clamp amplifiers, photomultiplier tubes, or cameras. Here we describe two complementary approaches for the detection and measurement of cAMP signals near the plasma membrane of cells. These probes take advantage of the ability of cyclic nucleotide-gated (CNG) channels to transduce small changes in cAMP concentrations into ionic flux through channel pores that can be readily detected by measuring Ca(2+) and/or Mn(2+) influx or by measuring ionic currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.