Abstract
Backscatter communication networks receive much attention recently due to the small size and low power of backscatter nodes. As backscatter communication is often influenced by the dynamic wireless channel quality, rate adaptation becomes necessary. Most existing approaches share a common drawback: they fail to take both spatial and frequency diversity into consideration at the same time. Consequently, the transmission rate may be improperly selected, resulting in low network throughput. In this paper, we propose a channel-aware rate adaptation framework (CARA) for backscatter networks. CARA incorporates three essential modules, a lightweight channel probing scheme that differentiates collisions from packet losses, a burstiness-aware channel selection mechanism benefiting as many backscatter nodes as possible, a rate selection method choosing the optimal rate, and a mobility detection that discovers location changes. We implement CARA on commercial readers, and the experiment results show that CARA achieves up to $4 \times$ goodput gain compared with the state-of-the-art rate adaptation scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.